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Abstract

Background: Gestational diabetes mellitus (GDM) is a form of diabetes that occurs during pregnancy. GDM is a
well known risk factor for foetal overgrowth, termed macrosomia which is influenced by maternal hypergycemia
and endocrine status through placental circulation. The study was undertaken to investigate the implication of
growth factors and their receptors in GDM and macrosomia, and to discuss the role of the materno-foeto-placental
axis in the in-utero regulation of foetal growth.

Methods: 30 women with GDM and their 30 macrosomic babies (4.75 ± 0.15 kg), and 30 healthy age-matched
pregnant women and their 30 newborns (3.50 ± 0.10 kg) were recruited in the present study. Serum
concentrations of GH and growth factors, i.e., IGF-I, IGF-BP3, FGF-2, EGF and PDGF-B were determined by ELISA. The
expression of mRNA encoding for GH, IGF-I, IGF-BP3, FGF-2, PDGF-B and EGF, and their receptors, i.e., GHR, IGF-IR,
FGF-2R, EGFR and PDGFR-b were quantified by using RT-qPCR.

Results: The serum concentrations of IGF-I, IGF-BP3, EGF, FGF-2 and PDGF-B were higher in GDM women and their
macrosomic babies as compared to their respective controls. The placental mRNA expression of the growth factors
was either upregulated (FGF-2 or PDGF-B) or remained unaltered (IGF-I and EGF) in the placenta of GDM women.
The mRNA expression of three growth factor receptors, i.e., IGF-IR, EGFR and PDGFR-b, was upregulated in the
placenta of GDM women. Interestingly, serum concentrations of GH were downregulated in the GDM women and
their macrosomic offspring. Besides, the expression of mRNAs encoding for GHR was higher, but that encoding for
GH was lower, in the placenta of GDM women than control women.

Conclusions: Our results demonstrate that growth factors might be implicated in GDM and, in part, in the
pathology of macrosomia via materno-foeto-placental axis.

Background
Excessive birth weight or foetal macrosomia is a com-
mon complication of gestational diabetes mellitus
(GDM) and is associated with adverse maternal and
infantile outcomes including higher rates of postpartum
haemorrhage in mothers, perineal lacerations and
increased risk for cesarean delivery [1]. Macrosomia has

been defined as a birth weight above either 4 kg or 95th
percentile for the gestational age. These infants are at
greater risk for foetal asphyxia, shoulder dystocia, birth
trauma and neonatal hypoglycemia. Furthermore,
macrosomic babies may have an increased susceptibility
to obesity and diabetes and/or cardiovascular diseases in
the later stage of life [2].
Foetal growth is governed by interactions of genetic,

nutritional, hormonal and environmental factors [3]. We
have previously shown that the metabolism of lipids/
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lipoproteins [4,5] and antioxidant status [6,7] are altered
in macrosomic newborns and their GDM mothers. We
have shown the malfunctioning of T-cells [8,9] and high
secretion of adipokines in GDM and their macrosomic
infants [10]. Hence, we have hypothesized that the
accelerated foetal growth, seen in the infants of GDM
mothers, may be due to in utero programming, caused
by a perturbation in the materno-foeto-placental growth
axis [9]. Indeed, the in utero insulin concentrations have
been shown to influence the induction and activity of
various hepatic enzymes associated with fat and carbo-
hydrate metabolism [11]. The role of growth factors has
also been suggested in the macrosomia [12]. Roth et al.
[13] have documented increased levels of IGF-1 in the
cord blood of macrosomic infants born to GDM
mothers. Lauszus et al. [14] studied diabetic pregnancy
and noted that both IGF-1 and IGF-2 levels were corre-
lated with high birth weight. It is noteworthy that the
placenta is an important endocrine organ as, during
human pregnancy, it produces numerous hormones
which may promote early embryonic growth, [15] and
influences the fetus by stimulating the production of
IGF-I and insulin [16].
Keeping in view the role of insulin and growth factors

in the progression of GDM and macrosomia [17], we
further studied, in the present report, the materno-
foeto-placental axis by determining the concentrations
of several growth factors both in GDM mothers and
their macrosomic newborns, and by assessing the
expression of mRNA encoding for growth factors (GH,
IGF-I, FGF-2, PDGF-B and EGF) and their receptors in
the placentas of normal and GDM mothers.

Methods
Patients
The subjects were recruited in the Gynaecology Depart-
ment, Hôpital Universitaire Farhat Hached, Tunisia,
between February and August 2007. The study protocol
was approved by the Sousse Farhat Hached Hospital Com-
mittee for Research on Human Subjects (Tunisia).
Informed written consent was obtained from all the sub-
jects/mothers. The pregnant women were 19 to 42 years
old. Placentas and cord blood were collected in 60 deliv-
eries divided into 30 GDM pregnancies, which had 30
macrosomic babies, and 30 control non-diabetic mothers,
which had 30 normal newborns. Spontaneously vaginally
delivered newborns, were immediately weighed after deliv-
ery. Babies from GDM mothers, whose birth weight was 2
S.D. greater than the mean birth weight of the control
infants, were considered as macrosomic infants. Selected
control women had no significant history of illness, no
pregnancy-related complications and no risk factor for
gestational diabetes including normal glucose tolerance
tests during the first and third trimesters of pregnancy.

GDM was diagnosis when fasting glucose ≥ 5.5 mmol/l.
The severity of GDM was categorized according to the
fasting plasma glucose level on the 3-hour 100-gr oral glu-
cose tolerance test (OGTT).

Anthropometric parameters
Birth weight (BW) and length (BL) were obtained from
each neonate immediately after birth. BL and head cir-
cumferences were measured with plastic-covered fabric
measuring tapes and read to the nearest mm. Based on
birth length, the ponderal index was calculated as: birth
weight (g)/birth length3 (cm) × 100. The BMI was calcu-
lated as birth weight (Kg)/birth length2 (m). The bio-
chemical characteristics of mothers and newborns are
shown in Table 1.

Blood sample collection
From each patient or control subject, maternal blood
was collected from arm vein after delivery of the baby
but before placenta delivery. Cord blood samples were
obtained from the umbilical vein immediately after
delivery. Fasting venous blood samples were collected in
tubes containing or not EDTA to obtain plasma and
serum, respectively. Serum or plasma was obtained by
centrifugation (1000 gx20 min). Plasma was immediately
used for glucose and HbA1c determinations. Serum was
aliquoted and frozen at -80°C for further determinations
of insulin, GH, IGF-I, IGF-BP3, FGF-2, EGF and PDGF-
B concentrations by ELISA (Peprotech Paris, France).
Lipid levels were determined by using enzymatic meth-
ods, according to the instructions furnished with the kit
(Boehringer, Mannheim, Germany).

Determination of insulin, GH and growth factor
concentrations
Serum concentrations of insulin, GH, IGF-I and IGF-
BP3 were estimated using non-extraction IRMA Kit
(DSL Texas, USA). Serum concentrations of FGF-2,
EGF and PDGF-B were estimated using ELISA Immu-
notech Kit (Peprotech Paris, France).

Determination of plasma glucose, HbA1c and
apolipoprotein levels
Serum triglycerides, total cholesterol and uric acid levels
were determined by using enzymatic methods. Plasma
fasting glucose was determined by glucose oxidase
method using glucose analyzer (Beckman Instruments,
Fullerton, CA, USA). Apolipoproteins A1 and B were
determined by using spectrophotometer.

Detection of mRNA of GH, growth factors and their
receptors by quantitative RT-PCR
Using RT-qPCR, we evaluated the expression of mRNA
of growth hormone (GH), growth factors and their
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receptors, e.g., insulin-like growth factor-I (IGF-I); IGF-I
receptor (IGF-IR); fibroblast growth factor-2 (FGF-2);
FGF-2 receptor (FGF-2R); platelet-derived growth fac-
tor-B (PDGF-B); PDGF receptor-b (PDGFR-b); epider-
mal growth factor (EGF) and EGF receptor (EGFR) and
IGF binding protein-3 (IGF-BP3).
Only one placental tissue from each subject was taken,

washed and rinsed in sterile PBS, and immediately
plunged into liquid nitrogen and stored at -80°c until
the extraction of total RNA. Total RNA was extracted
from placental tissue by using Trizol. One μg of total
RNA was reverse transcribed with Super script II
RNAse H-reverse transcriptase. Real-time PCR was per-
formed on the iCycler iQ real time detection system and
amplification was undertaken by using SYBER Green I
detection. Oligonucleotide primers, used for mRNA
analysis, were based on the sequences of human genes
in Gene bank database. The sequences of the PCR pri-
mers used are as follows: FGF-2, forward, 5’-CATA-
CAGCAGCAGCCTAGCAAC-3’ and reverse, 5’-
TTCGGCAACAGCACACAAATCC-3’; EGF, forward,
5’-TCTGCGTGGTGGTGCTTGTC-3’ and reverse, 5’-
CCTGCGACTCCTCACATC TCTG-3’; PDGF-B, for-
ward, 5’-CAAGACGGCACTGAAGGAGACC-3’ and
reverse, 5’-GAGACA GACGGACGAGGGAAAC-3’;
EGFR, forward, 5’-GAGGGTGAGCCAAGGGAGTTTG-
3’ and reverse, 5’-GGCAGGTCTTGACGCAGTGG-3’;
IGF-1, forward, 5’-CACCATGTCCTCCTCGCAT CTC-
3’ and reverse, 5’-CCGACTGCTGGAGCCATACC-3’;
IGF-BP3, forward, 5’-GGTCCCTGCC GTAGA-
GAAATGG-3’ and reverse, 5’-CCCCGCTTCCTG

CCTTTGG-3’; PDGFb-R, forward, 5’-C GCAGCAGT-
GAGAAGCAAGC-3’ and reverse, 5’-TAGTCCAC-
CAGGTCTCCGTAGC-3’; IGF-1R, forward, 5’-
GCCTTGGTCTCCTTGTCCTTCC-3’ and reverse,
5’-GTTGCGGTGGTCCCAGTCC-3’; GH, forward, 5’-
CCGACACCCTCCAACAGGGA-3’ and reverse,
5’-CCTTGTCCATGTCCTTCCTG-3’; GHR, forward, 5’-
GGTGAAGGATGGCGACTCTGG-3’ and reverse,
5’-TGGATAACACTGGGC TGCTGAG-3’; FGF-2R, for-
ward, 5’-CCCACCGCAGGCTGAAGG-3’ and reverse,
5’-CACGACCA GGCAGATGAAACG-3’. Relative quan-
tification of mRNA in different groups was determined
as follows: ΔΔCt = ΔCt of gene of interest - ΔCt of 18
S. ΔCt = Ct of Macrosomic - Ct of control. Relative
quantity (RQ) was calculated as follows: RQ = (1+E)
(-ΔΔCt).

Statistical analysis
All results are expressed as mean ± standard deviation
(SD). Statistical significance of the differences between
groups was performed by one-way ANOVA, followed by
LSD test. Differences with p < 0.05 were considered to
be significant. Simple correlations were assessed by
Spearman’s rank test.
Multiple regression analysis was carried out by using

SPSS (version 15). The dependent variable (BW = birth
weight) was normally distributed. Pearson correlation
coefficients (r) were determined by the associations
between BW and growth factors [PDGF, IGF-BP3, FGF-
2, EGF, GH and IGF-1]. A linear regression model was
used to evaluate the independent variables explaining

Table 1 Biochemical characteristics of mothers and their offspring

Newborns Mothers

Control Macrosomic Control Diabetic

Insulinemia (μUI/ml) 5.43 ± .90 7.50 ± 3.25* 4.99 ± 1.20 10.55 ± 4.80**

HbA1c (%) - - 4.0 ± 0.50 6.9 ± 0.45**

Fasting glucose (mmol/l) 5.89 ± 0.80 4.96 ± 0.40 4.57 ± 0.77 6.80 ± 0.66**

Apolipoprotein A1 1.21 ± 0.06 1.17 ± 0.1 2.01 ± 0.29 1.91 ± 0.26

Apolipoprotein B 0.56 ± 0.08 0,4 ± 0,05 1.31 ± 0.25 1.23 ± 0.09

CRP 1.7 ± 033 1.74 ± 0.63 4.60 ± 0.8 5.75 ± 1.42

Total cholesterol (mmol/l) 1.85 ± 0.18 1.92 ± 0,12 5.74 ± 0,21 5.19 ± 0.32

HDL-cholesterol (mmol/l) 0.83 ± 0.06 0.92 ± 0.06 2.25 ± 0.16 2.20 ± 0.12

LDL-cholesterol (mmol/l) 0.74 ± 0.15 0.64 ± 0.05 2.61 ± 0.26 2.16 ± 0.26

Triglycerides (mmol/l) 0.57 ± 0.05 0.50 ± 0.01 1.92 ± 0.14 2.48 ± 0.15*

Uric acid 283.86 ± 16.85 305.93 ± 19.29 257.92 ± 15.66 326.45 ± 29.39*

Proteins 49 ± 1.40 51.38 ± 1.67 58.60 ± 0.95 55.50 ± 1.44**

BMI (Kg/m2) 13.44 ± 0.30 35.80 ± 0.70* 23.15 ± 2.30 24.90 ± 2.90

Aspartate aminotransferase (UI/l) 36.76 ± 3.27 41.33 ± 6.04 30.02 ± 4.19 21.23 ± 2.57

Alanine aminotransferase (UI/l) 12.67 ± 1.49 11.85 ± 2.10 16.45 ± 2.5 8.25 ± 1.49**

Mode of delivery - - Spontaneous Spontaneous

Values are means ± SD. n = 60 control mothers and babies; n = 60 gestational diabetic mothers and macrosomic babies. Significant difference between diabetic
mothers or macrosomic newborns and their corresponding controls is as follow: *p < 0.05, **p < 0.001.
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the variations in BW. Candidate variables were stepped
into the model with a stepwise selection method. To
determine entry and removal from the model, significant
levels of 0.15 and 0.05 were used, respectively. BW
reference equation was evaluated in two groups of 60
gestational mothers, diabetics or not and their new born
babies, macrosomic or not.

Results
Blood HbA1c, insulin and glucose levels
Plasma HbA1c levels were statistically higher in GDM
women than control mothers (Table 1). GDM exhibited
higher fasting glycemia and insulinemia compared with
healthy pregnant mothers. The macrosomic babies, as
well as their age matched controls, were normoglycemic,
but the formers were hyperinsulinemic (Table 1).

Serum biochemical parameters
Triglyceride (TG) levels were higher in GDM mothers
compared to the control women. HDL-, LDL- and total-
cholesterol were not altered in macrosomic infants and
their mothers compared to respective control subjects
(Table 1). Serum protein and alanine aminotransferase
levels were decreased whereas uric acid concentrations
increased in GDM mothers. CRP and apolipiprotein A1
and B remained unchanged in GDM women and macro-
cosmic babies compared to their respective controls.
Serum protein and alanine aminotransferase levels were
decreased whereas uric acid concentrations increased in
GDM mothers. In fact, a concomitant increase in uric
acid, alanine aminotransferase and protein concentra-
tions indicates a situation of pre-eclampsia. Since pro-
tein concentrations were lower in GDM subjects, it
indicated that there was no renal complication in these
subjects.

Anthropometric Data
There were 14 males and 16 females among control
neonates and 18 males and 12 females among macroso-
mic babies. BW, BL, HC and CP were, respectively, 3.50
± 0.10 Kg, 49.00 ± 0.32 cm, 13.44 ± 0.30 (Kg/m2), and
34.17 ± 0.21 cm in control neonates; and 4.75 ± 0.15
Kg, 52.22 ± 0.31 cm, 35.80 ± 0.70 (Kg/m2) and 35.87 ±
0.29 cm in macrosomic babies. Macrosomic neonates
had significantly greater BW and BL than control
neonates.

Serum growth factor concentrations and expression of
mRNA of growth factor receptors
As compared with non-diabetic mothers and their chil-
dren, GDM women and their macrosomic newborns
exhibited higher serum IGF-I levels. However, no differ-
ence was observed in placental IGF-I mRNA expression
in GDM, although a significant increases was noticed in

placental IGF-IR mRNA expression in these women
(Fig. 1). IGF-BP3 concentrations were upregulated in
the serum of GDM women and their infants though
IGF-BP3 mRNA expression was down-regulated in the
placenta of GDM mothers (Fig. 2). The pituitary GH
levels in GDM mothers and their macrosomic infants
were downregulated. Interestingly, the expression of
mRNA encoding for the pituitary GH was downregu-
lated and that for GHR was upregulated in the placenta
of GDM women (Fig. 3). Serum EGF levels both in
GDM mothers and their macrosomic infants were upre-
gulated though placental EGF mRNA expression
remained unaltered in the GDM (Fig. 4). Placental
EGFR mRNA expression was higher in GDM mothers
than the control women (Fig. 4). Serum FGF-2 levels
both in GDM and their macrosomic infants were upre-
gulated as compared to respective controls. FGF-2
mRNA expression was upregulated whereas that of
FGF-2R was downregulated in the placenta of GDM
(Fig. 5). PDGF-B concentrations and the expression of
mRNA for PDGF-B and its receptor, PDGFR-b, were
higher in GDM and their macrosomic babies compared
to respective controls (Fig. 6).
In this study, we have proposed a model for multiple

regression model (Table 2) for the birth weight (BW)
and different growth factors. Hence, Table 3 shows the
correlation analysis.

Discussion
An increased rate of foetal growth leading to macroso-
mia is the main abnormality in the infants born to
GDM mothers [18]. In the present study, the GDM
women were hyperinsulinemic and hyperglycemic,
reflecting a decrease in insulin sensitivity in these indivi-
duals [19]. However, the macrosomic infants were only
hyperinsulinemic. Indeed, it has been shown that during
GDM, the mother’s glucose, after its passage via the
foeto-placental barrier, induces the release of insulin
from foetal pancreas and, thereby, produces foetal
hyperinsulinemia [19]. Hence, the increased levels of
foetal insulin have been shown to stimulate mitogenic
and anabolic mechanisms in the insulin sensitive foetal
tissues, i.e., muscle, connective tissue and adipose tissue.
Recent studies have documented that, in addition to

insulin, a variety of maternal and foetal insulin-like
growth factors (IGF) may play an important role in the
foetal growth [20]. The protocol of the present study did
not allow us to discriminate into which compartment
placentally produced hormones were secreted. However,
we observed that serum IGF-I levels in macrosomic new-
borns and their GDM mothers were higher than those in
controls. Our observations corroborate several reports
which have demonstrated increased levels of IGF-I dur-
ing pregnancy in both the maternal and foetal serum;
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hence, the upregulated IGF-I concentrations were corre-
lated with the infant’s birth weight [20-22]. In contrast,
Hill et al. [23] have demonstrated no significant altera-
tions in the levels of cord blood IGF-I of GDM mothers
compared to the control. Interestingly, the expression of
IGF-I mRNA is not significantly altered in the placenta
of GDM mothers. In fact, Roth et al. [13] have demon-
strated no differences in the expression of IGF-I mRNA
in the placentas of GDM and control mothers. IGF-I can-
not cross the placental barrier [24] and, hence, it is unli-
kely that the increase in the foetal size may be due to
high maternal IGF-I levels. Though the origin of IGF-I in

macrosomic babies is not well understood, high levels of
foetal IGF-I may be implicated in the weight gain in the
macrosomic babies [25].
The effect of delivery upon circulating hormone levels

in general is unknown. In mother with GDM, IGF-I
levels were significant correlated with IGF-I levels in
macrosomic newborns (r = 0.52, n = 30, P = 0.017).
Additionally, IGF-I might also influence the transport of
glucose and amino acids across the placenta [25,26] and
might again contribute to weight gain in macrosomic
infants. Furthermore, the increased expression of IGF-IR
mRNA in the placenta will also facilitate the mechanism
of action of IGF-I in macrosomic babies. Our idea can
be supported by the observations of Bhaumick et al.
[27] who have reported a high placental number of IGF-
IR during diabetic pregnancy. Hence, increased numbers
of placental IGF-IR were supposed to be induced by the
poor glycemic control as observed in the GDM women
in our study [27].

Figure 1 (a) Serum IGF-I concentrations, and (b) expression of
placental mRNA of IGF-I and IGF-IR in gestational diabetic
mothers and their babies. Serum IGF-I concentrations and mRNA
expression by RT-PCR were assessed as described in the section of
the methods. Values are means ± SD. NS = insignificant differences.
n = 60 control mothers and babies; n = 60 gestational diabetic
mothers and macrosomic babies.

Figure 2 (a) Serum IGF-BP3 concentrations and (b) expression
of placental IGF-BP3 mRNA in gestational diabetic mothers
and their babies. Serum IGF-BP3 concentrations and mRNA
expression by RT-PCR were assessed as described in the section of
the methods. Values are means ± SD. n = 60 control mothers and
babies; n = 60 gestational diabetic mothers and macrosomic babies.

Figure 3 (a) Serum GH concentrations, and (b) expression of
placental mRNA of GH and GHR in gestational diabetic
mothers and their babies. Serum GH concentrations and mRNA
expression by RT-PCR were assessed as described in the section of
the methods. Values are means ± SD. n = 60 control mothers and
babies; n = 60 gestational diabetic mothers and macrosomic babies.

Figure 4 (a) Serum EGF concentrations, and (b) expression of
placental mRNA of EGF and EGFR in gestational diabetic
mothers and their babies. Serum EGF concentrations and mRNA
expression by RT-PCR were assessed as described in the section of
the methods. Values are means ± SD. NS = insignificant differences.
n = 60 control mothers and babies; n = 60 gestational diabetic
mothers and macrosomic babies.
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Primarily, IGF-1 is regulated by the IGF-BP3, an IGF-I
binding protein. The IGF-BP3 complexes with IGF-I
and, therefore, acts as a reservoir for IGF-I in the blood
circulation [28]. We have observed that IGF-BP3 levels
are increased in the serum of GDM mothers and their
macrosomic infants and IGF-I levels were significant
correlated with IGF-BP3 in macrosomic newborns (r =
0.36, n = 30, P = 0.04). Our observations are in close
agreement with the results of several investigators [29]
who have demonstrated an increase in cord serum IGF-
BP3 concentrations in GDM pregnancies, though Hill et
al [23] have observed no significant modifications in the
levels of IGF-BP3 of GDM mothers and their babies. In
our study, the high levels of IGF-BP3 in GDM and their
macrosomic infants are not contributed by the placenta
as the IGF-BP3 mRNA expression is downregulated in
GDM women. Hence, it is possible that high insulin and
IGF-I concentrations both in GDM mothers and

macrosomic babies might be responsible for high IGF-
BP3 synthesis. Indeed, insulin has been shown to regu-
late IGF-BP3 levels in GDM pregnancy [30]. Moreover,
insulin and IGF-I treatment in vitro also stimulates the
secretion of IGF-BP3 [31].
Regarding GH, we would like to stress that placental

GH constitutes the majority of circulating growth hor-
mone in late pregnancy, and this hormone is not found
in the fetal circulation. In our study, we observed that
pituitary GH levels were significantly diminished in the
GDM women and their macrosomic infants. Similarly,
pituitary GH mRNA expression is also curtailed in the
placenta of these women, though placental pituitary
GHR mRNA is upregulated in these subjects. We would
like to recall that pituitary GH levels are diminished gra-
dually as a function of progress of a normal pregnancy
[32]. It is noteworthy that placenta expresses another
variant of GH (GHv) which bears a close homology with
pituitary GH. Hence, we cannot elaborate the role of
GHv. In our study, the PCR primers used for the GH
could not distinguish between these two variants of GH.
However, it is clear that they share 93% of amino acid
sequences. Interestingly, in mother with GDM, pituitary
GH levels were significant correlated with macrosomic
birth weight babies (r = 0.36, n = 30, P = 0.04). How
pituitary GH concentration in GDM and macrosomic
babies are downregulated is not well understood. How-
ever, Lee et al. [33] have shown that insulin resistance,
marked by high plasmatic insulin concentrations, is
associated with low GH levels in diabetic subjects. It is
possible that high IGF-I levels may be responsible for
low GH concentrations in the GDM women and macro-
somic babies. Our statement is supported by the obser-
vations of Lacroix et al. [34] who have demonstrated

Figure 5 (a) Serum FGF-2 concentrations, and (b) expression of
placental mRNA of FGF-2 and FGF-2R in gestational diabetic
mothers and their babies. Serum FGF-2 concentrations and mRNA
expression by RT-PCR were assessed as described in the section of
the methods. Values are means ± SD. n = 60 control mothers and
babies; n = 60 gestational diabetic mothers and macrosomic babies.

Figure 6 (a) Serum PDGF-B concentrations, and (b) expression
of placental mRNA of PDGF-B and PDGFR-b in gestational
diabetic mothers and their babies. Serum PDGF-B concentrations
and mRNA expression by RT-PCR were assessed as described in the
section of the methods. Values are means ± SD. n = 60 control
mothers/babies; n = 60 gestational diabetic mothers/macrosomic
babies.

Table 2 Correlation between birth weight & growth
factors

Correlation:
birth weight

&
growth factor

n r P

PDGF-NB 60 0.476 0.025*

PDGF-M 60 0.486 0.021*

IGF-BP3-NB 60 0.636 0.01*

IGF-BP3-M 60 0.150 0.502

FGF-2-NB 60 0.626 0.01*

FGF-2-M 60 0.181 0.418

GH-NB 60 0.078 0.724

GH-M 60 0.310 0.159

EGF-NB 60 0.626 0.001**

EGF-M 60 0.181 0.418

IGF-1-NB 60 0.31 0.159

IGF-1-M 60 0.253 0.255

*p < 0.05, **p < 0.001, for abbreviations, see the Table 3.
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that placental exposure to high IGF-I levels could
induce a down-regulation of pituitary GH production in
the sheep. Besides, Misra et al. [35] have recently shown
that low GH levels are involved in weight gain.
EGF has been shown to modulate foeto-placental

growth regulation [34,36]. We observed that EGF con-
centrations were increased in GDM mothers and macro-
somic babies though the placental EGF mRNA was not
altered. Our results are in accordance with the report of
Loukovaara et al. [37] who have shown that cord serum
EGF concentrations are increased in GDM pregnancies.
Since EGF-R mRNA expression is higher in the placenta
of GDM women than that in control women, we can
allude that high availability of these receptors in the pre-
sence of high EGF concentrations may be involved in
the weight gain in the macrosomic babies. Hence, we
would like to cite the results of Masuyama et al. [38]
who have illustrated that EGF promotes amino acid
transport in the rat placenta and, therefore, influences
foetal growth. EGF has been reported not to cross the
placental barrier [39]. How EGF concentrations are
increased in GDM is not well-understood. However, it
has been hypothesized that a rise in EGF levels seems to
be a metabolic response of the foeto-placental unit to
diabetes-related hyperglycemia [37]. In mother with
GDM, glucose levels were significant correlated with
EGF levels (r = -0.57, n = 30, P = 0.027) and with new-
borns EGF levels (r = - 0.51, n = 30, P = 0.031).

In our study, we observed higher FGF-2 concentra-
tions in GDM mothers and their macrosomic infants
than their respective controls. Furthermore, in the pla-
centa of GDM women, we noticed a high expression of
FGF-2 mRNA which may contribute to high FGF-2
synthesis. Our observations are substantiated by the
report of Hill et al. [40] who have shown the placenta to
be the site of FGF-2 synthesis. FGF-2, widely expressed
by embryonic tissues [41], is associated to increased
incidence of foetal macrosomia [42]. Whatsoever, the
FGF-2R mRNA expression is downregulated in the pla-
centa. Platelet-derived growth factor (PDGF) and its
receptors (PDGFR) are important regulators for tissue
interactions to cell migration, proliferation, survival and
deposition of extracellular matrix during mammalian
embryonic development [43]. Three ligands (PDGF-A,
-B, and -C) bind to PDGFR-a with high affinity. To
date, studies suggest that PDGF-B and PDGF-D mainly
bind to PDGFR-b which is implicated in the organogen-
esis, whereas PDGF-A binds to PDGFR-a which is
required for embryogenesis [43]. PDGF-C binds to both
PDGFR-a and PDGFR-b and has limited role in the
development of the foetus [43]. Since PDGF-B and
PDGFR-b are also essential for development of normal
structure and function of conduit vessels and capillaries,
[44] we, in the present study, focused our study on
these two parameters. Hence, we observed a significant
rise in the mRNA expression of PDGF-B and PDGFR-b

Table 3 Independent variables included in the forward linear stepwise multiple regression model for the birth weight
(BW)

VARIABLE INITIAL MODEL FINAL MODEL

95%
confidence interval

95%
confidence interval

Mean difference in birth weight (g) Lower bound Upper
bound

P Mean difference
in birth weight (g)

Lower bound Upper
bound

P

Constant - 1563 - 7199 4073 0.287 - 1264 - 3124 596 0.170

PDGF-NB 0.659 -3 5 0.594 - - - -

PDGF-M 5.023 2 8 0.002 5.041 3 7 0

IGF-BP3-NB -0.571 - 2 0 0.177 - - - -

IGF-BP3-M 0.058 0 0 0.277 - - - -

FGF-2-NB - - - 0.074 7.673 5 10 0

FGF-2-M 3.321 - 1 8 0.029 2.743 0 6 0.057

GH-NB 25.320 - 24 75 0.161 - - - -

GH-M 602 - 742 1945 0.100 - - - -

EGF-NB 6.228 1 11 0.001 - - - -

IGF-1-NB -5.690 -3 2 0.781 - - - -

IGF-1-M 0.466 - 1 2 0.619 - - - -

Gender 366 -56 788 0.082 - - - -

PDGF-NB: Platelet derived growth factor-New born, PDGF-M: Platelet derived growth factor-Mother, IGF-BP3-NB: Insulin-like growth factor binding protein-3 New
born, IGF-BP3 M:Insulin-like growth factor binding protein-3 Mother, FGF-2 NB: Fibroblast growth factor-2 New born, FGF-2 M: Fibroblast growth factor-2 Mother,
GH-NB: Growth hormone-New born, GH M: Growth hormone- Mother, EGF-NB: Epidermal growth factor-New born, IGF-1 NB: Insulin-like growth factor-I New
born, IGF-1 M: Insulin-like growth factor-I-Mother, infant’s gender (male/female). Proposed model for the total sample: BW (g) = 5.041 × PDGF-M + 2.743 × FGF2-
M + 7.673 × FGF2-NB-1264. GH should be considered as pituitary-GH.
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in the placenta of GDM mothers compared with con-
trols. Plasma PDGF-B concentrations were also
increased in GDM mothers and their macrosomic
infants. The macrosomic birth weight were significant
correlated with the plasma PDGF-B levels (r = -0.45, n
= 30, P = 0.049). Such an increase in PDGF-B produc-
tion in gestational myometrium could be associated
with the uterine smooth muscle cell hyperplasia and
hypertrophy, characteristics of the gestational uterus.
Our results are in accordance with those obtained by
Heiring et al. [45] who have observed a significantly
stronger PDGFR mRNA in pregnant women with GDM
compared with normal pregnant women. As far as the
physiological inductor of PDGFR-b levels is concerned,
we would like to mention the implication of insulin.
The level of insulin in macrosomic newborns, were sig-
nificant correlated with the plasma PDGF-B levels (r =
0.53, n = 30, P = 0.017). Indeed, insulin has been shown
to enhance the mitogenic effects of PDGFR-b in cul-
tured smooth muscle cells where it interferes with the
cell signaling cascade, particularly with phosphatidylino-
sitol-3-kinase of PDGFR-b [46,47]. High PDGF-B levels
via PDGFR-b may also participate in placental angiogen-
esis in GDM women [48]. To properly interpret our
results, we tried to present a linear regression model
that summarizes all interactions between the different
growth factors studied: BW (g) = 5,041 × PDGF-M 2743
+ × FGF2-M 7673 + × FGF2-NB - 1264. Hence, the
main factors that affect fetal weight are maternal PDGF,
and maternal and fetal FGF2 (Table 3).

Conclusion
A perusal of our observations suggests that human
GDM and macrosomia are associated with down-regula-
tion of GH and up-regulation of several growth factors,
principally IGF-I, EGF, FGF-2 and PDGF-B. The mRNA
expression of three growth factor receptors, i.e., IGF-IR,
EGF-R and PDGFR-b, was upregulated in the placenta
of GDM women. It seems that growth factors and their
receptors influence materno-foeto-placental communica-
tion which might be implicated in the foetal weight gain
in macrosomic babies during hyperinsulinemia, appar-
ently seen in the GDM and their infants. However,
further studies are required to study the interaction of
growth factors with their receptors and whether down-
stream signaling cascade is altered in the placenta or
target organs of GDM and macrosomia.
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